Finding Minimal Permutation Representations of Finite Groups

نویسندگان

  • BEN ELIAS
  • LIOR SILBERMAN
چکیده

A minimal permutation representation of a finite group G is a faithful G-set with the smallest possible cardinality. We study the structure of such representations and show that for most groups they may be obtained by a greedy construction. It follows that whenever the algorithm works (except when central involutions intervene) all minimal permutation representations have the same set of orbit cardinalities. Using the same ideas we also show that if the size d(G) of a minimal faithful G-set is at least c|G| for some c > 0 then d(G) = |G|/m + O(1) for an integer m, with the implied constant depending at most on c.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

QUASI-PERMUTATION REPRESENTATIONS OF METACYCLIC 2-GROUPS

By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus, every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fa...

متن کامل

Groups with Two Extreme Character Degrees and their Minimal Faithful Representations

for a finite group G, we denote by p(G) the minimal degree of faithful permutation representations of G, and denote by c(G), the minimal degree of faithful representation of G by quasi-permutation matrices over the complex field C. In this paper we will assume that, G is a p-group of exponent p and class 2, where p is prime and cd(G) = {1, |G : Z(G)|^1/2}. Then we will s...

متن کامل

On minimal degrees of faithful quasi-permutation representations of nilpotent groups

By a quasi-permutation matrix, we mean a square non-singular matrix over the complex field with non-negative integral trace....

متن کامل

QUASI-PERMUTATION REPRESENTATIONS OF SUZtTKI GROUP

By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fai...

متن کامل

On the Mark and Markaracter Tables of Finite Groups

Let G be a finite group and C(G) be the family of representative conjugacy classes of‎ ‎subgroups of G‎. ‎The matrix whose H,K-entry is the number of ‎fixed points of the set G/K under the action of H is called the‎ ‎table of marks of G where H,K run through all elements in‎ C(G)‎. Shinsaku Fujita for the first time introduced the term “markaracter” to discuss marks for permutation representati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008